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Pediatric pan-cancer expression data  

The pediatric pan-cancer gene expression dataset was obtained from the Treehouse Childhood 

Cancer Initiative dataset (released July 2017) and downloaded from the UCSC Xena platform at 

https://xenabrowser.net/datapages/. This public database is a compendium of the Treehouse partner 

clinical sites (TREEHOUSE), the Therapeutically Applicable Research to Generate Effective 

Treatments (TARGET) and The Cancer Genome Atlas (TCGA) databases. RNA gene expression 

datasets were downloaded for 11,074 samples and 60,498 transcripts together with patient age, 

gender and disease type. We selected cases with an age at diagnosis less than 18 years old and 

cancer types represented by at least 50 cases. The acute myeloid leukemia (AML), acute 

lymphoblastic leukemia (ALL), neuroblastoma (NBL) and Wilms tumor (WT) samples were 

selected from the TARGET project and supplemented by the medulloblastoma (MBL) and glioma 

samples from TREEHOUSE. Expected counts were annotated using the human genome 

(GRCh38.p3) version 23 with Ensembl gene IDs. We focused on transcripts with consistent 

annotations, i.e. protein-coding genes, with more than 10 reads in overall samples. Read counts 

were normalized using the variance-stabilizing transformation of the DESeq2 R v.16.1 package1 

based on tumor type and project (1: TREEHOUSE; 2: TARGET) variables. To reduce the noise, 

we discarded the 25% of the less varying genes and removed one outlier identified by hierarchical 



clustering analysis (hclust R stats v.3.4.4. function). The resulting transcriptome dataset consisted 

in 14,748 gene expression measurements for 820 pediatric tumor samples. 

 

Weighted gene co-expression network analysis  

We constructed a co-expression network using the weighted gene co-expression network analysis 

(WGCNA) method developed by Langfelder and Horvath2 (WGCNA R library v.1.63). We used a 

pairwise Pearson correlation to calculate the similarity matrix. We applied a soft power adjacency 

function with ß = 14, to best fit the scale-free topology criterion as recommended by the authors. 

The topological overlap matrix was determined by the strength of the shared connection between 

the gene pairs and their neighbors3. Hierarchical clustering was performed on the topological 

overlap–based dissimilarity matrix with average linkage. The modules were identified by cutting 

the dendrogram to define stable clusters with a dynamic cut- tree algorithm. The signed co-

expression networks were generated using the function blockwiseModules with sized modules 

ranging from 30 to 8,000 genes and merged when sharing high transcriptional similarities; 

mergeCutHeight set to 0.25. To analyze large dataset with more than 5,000 probes, the function 

blockwiseModules split automatically the dataset into several blocks. The Module Eigengene (ME) 

was defined as the first principal component of a given module and considered as a representative 

of the module expression profile. Intra- modular connectivity measured the sum connectivity of a 

given gene to the other genes within the same module and the most highly interconnected genes 

were defined as hub genes. The Module Membership (MM) was measured by correlating the 

expression profile of a gene with the ME of a module. The gene significance (GS) reflected the 

association of gene to external information, e.g. tumor type. The GS evaluated the gene expression 

differences between tumor groups and was reported as minus log10 of the adjusted p-value of the 



Wilcoxon Rank-Sum test (wilcox.test R stats v.3.4.4). P-values were adjusted with a Bonferroni 

correction according to the number of genes and tumor types tested (p = 5.65x10-7).  

 

Reference childhood cancer gene, genomic alteration and druggable gene sets  

PediCan (Pediatric Cancer) is the first pediatric gene data resource based on a comprehensive 

literature curation and data integration4. The corresponding dataset (pcdb_gene_735_download.txt) 

was downloaded from http://pedican.bioinfo-minzhao.org/. For each type of cancer, we used the 

following keywords: "neuroblastoma", "glioma", "acute lymphoblastic leukemia", "acute 

myelocytic leukemia", "Wilms' tumor", "medulloblastoma" and collated all the genes matching the 

queries to constitute a pediatric cancer genes (pedCGs) list for each tumor type. Based on the work 

of Zhang and colleagues5, we selected all the germline variants reported in autosomal dominant 

and recessive cancer genes to establish pediatric predisposition (pedCPGs) in each pediatric cancer 

histotype. We also displayed all the alterations in autosomal dominant cancer genes across modules 

by using the oncoPrint function (ComplexHeatmap R library v.1.14.0). We used the list of pediatric 

cancer driver genes (pedCDGs) provided by Ma and colleagues6 and selected only the significantly 

mutated (MutSigCV, p < 0.01 or GRIN, p < 0.01) for each pediatric tumor type. Potentially 

druggable genes (PDGs) consisted in the one known to have a direct or indirect targeted treatment 

available or under development7.  
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